Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows
نویسندگان
چکیده
منابع مشابه
Energy Stable Schemes for Cahn-Hilliard Phase-Field Model of Two-Phase Incompressible Flows∗∗∗
Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogou...
متن کاملDecoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows
We construct in this paper two classes, based on stabilization and convex splitting, of decoupled, unconditionally energy stable schemes for Cahn-Hilliard phase-field models of two-phase incompressible flows. At each time step, these schemes require solving only a sequence of elliptic equations, including a pressure Poisson equation. Furthermore, all these elliptic equations are linear for the ...
متن کاملError estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows
We carry out rigorous error analysis for some energy stable time discretization schemes developed in [20] for a Cahn-Hilliard phase-field model and in [19] for an Allen-Cahn phase-field model.
متن کاملDecoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density
We consider in this paper numerical approximations of two-phase incompressible flows with different densities and viscosities. We present a variational derivation for a thermodynamically consistent phase-field model that admits an energy law. Two decoupled time discretization schemes for the coupled nonlinear phase-field model are constructed and shown to be energy stable. Numerical experiments...
متن کاملA Hele-Shaw-Cahn-Hilliard model for incompressible two-phase flows with different densities
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn–Hilliard–Navier–Stokes model introduced by Abels, Garcke and Grün (Math. Models Methods Appl. Sci. 2012), which uses a volume averaged velocity, we derive a diffuse interface mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Annals of Mathematics, Series B
سال: 2010
ISSN: 0252-9599,1860-6261
DOI: 10.1007/s11401-010-0599-y